

Al Applications in Aviation

Dominik Kerschat BSc CTO – Karman Aerospace

Why Al?

(Statista, 2024)

Why Al?

"The market value is expected to increase from USD 5.41 billion in 2021 to USD 23.21 billion in 2028" – NASDAQ OMX (2022)

"Create an image depicting an air traffic control tower in comic style."

Background

Aviation BSc - FH Joanneum, Graz, AT

FH JOANNEUM Luftfahrt / Aviation

Background

Flight Control Systems Eng. – AutoFlight, Augsburg, DE

Background

Uncrewed and Autonomous Systems MS – Embry Riddle Aeronautical University, Daytona Beach, FL

Karman Aerc space

Unmanned Systems

Avionics Software

Karman Aerospace

Associated Member of INDUSTRY ACTIVITIES A Program of SAE ITC

Safety = Certification

EASA AI Roadmap 2.0

May 2023 High Level No Formal Methods

Part-Al AMC & GM

EASA Timeline

2019 - First AI IPC applications 2025 - approvals of Level 1 AI/ML 2035 - approvals of Level 2 / 3A AI 2050+ - autonomous AI

March 2024 – GM Lvl 1&2 ML

FAA

Roadmap for Artificial Intelligence Safety Assurance Workforce by Q32025

EUROCAE

WG-114 Artificial Intelligence ED-324 / ARP6983: AI/ML standard in aviation Open Consultation in Q3 2025

Neural Networks

Anomaly Detection

Anomaly Classification

Anomaly Classification

Air Transat Flight 236 Toronto to Lisbon 2001

Right engine fuel leak 65nm (120km) Longest glide

Simulation

Simulation

Course Speed Range Altitude

(Defining well clear for Unmanned Aircraft Systems, 2015)

(NASA Langley Research Center, 2017)

Predictive Airports Airspace Other Traffic Obstacles

(NASA Langley Research Center, 2017)

DAA Simulation

DAA Simulation

DAIDALUS open source

DAA Simulation

PolyCARP ICAROUS RTCA DO-365B MOPS for DAA / UAS

Integrated AI

Integrated AI

Contact

Dominik Kerschat Karman Aerospace d.kerschat@karman-aerospace.com

References

Stephen P. Cook, Dallas Brooks, Rodney Cole, Davis Hackenberg, & Vincent Raska. (n.d.). Defining Well Clear for Unmanned Aircraft Systems. *AIAA Infotech @ Aerospace*. <u>https://doi.org/10.2514/6.2015-0481</u>

Balachandran, S., National Institute of Aerospace, Narkawicz, A., Muñoz, C., Consiglio, M., & NASA Langley Research Center. (n.d.). A path planning algorithm to enable Well-Clear low altitude UAS operation beyond visual line of sight. In *Twelfth USA/Europe Air Traffic Management Research and Development Seminar (ATM2017)* [Conference-proceeding]. https://shemesh.larc.nasa.gov/fm/papers/ATM-2017-16-draft.pdf